GE數字模塊 IC693MDL734 全新原裝 質保一年
| 更新時間 2024-12-28 13:30:00 價格 638元 / 件 品牌 GE 型號 IC693MDL734 產地 美國 聯系電話 0592-6372630 聯系手機 18030129916 聯系人 蘭順長 立即詢價 |
GE數字模塊 IC693MDL734 全新原裝 質保一年
IC200NDD010 | IC200CHS014 | IC693CBL327 |
IC200UDD212 | IC200UDD020 | IC693MDL260 |
IC200PNS002 | IC200NDD101 | IC693CBL311 |
IC200CHS102 | IC200CHS011 | IC693CBL303 |
IC200CHS101 | IC200CHS122 | IC693CBL313 |
IC200UDD220 | IC200MDL743 | IC693NIU004 |
IC200UDR120 | IC200MDL750 | IC693CBK004 |
IC200CPU005 | IC200CBL655 | IC693MCD001 |
IC200UDD240 | IC200CHS001 | IC693MDL241 |
IC200CHS112 | IC200CBL602 | IC693PBS201 |
IC200CHS022 | IC200CHS015 | IC693CBL301 |
IC200PKG104 | IC200CBL635 | IC693CBK002 |
IC200NDR010 | IC200CBL615 | IC693CBK001 |
IC200UDD104 | IC200UAL006 | IC693MDL330 |
IC200NAL110 | IC200MDL742 | IC693PBM200 |
IC200PNS001 | IC200UDD040 | IC695RMX128 |
IC200NAL211 | IC200MDL740 | IC695CPU320 |
IC200NDR001 | IC200CHS002 | IC695CMX128 |
IC200MDL930 | IC200CBL555 | IC695ACC415 |
IC200CHS025 | IC200CBL605 | IC695ACC414 |
IC200CHS005 | IC200UDD110 | IC695ACC413 |
IC200CHS006 | IC200MDL730 | IC695CPK400 |
IC200CHS003 | IC200CBL600 | IC695EDS001 |
IC200CHS111 | IC200CBL510 | IC695ACC412 |
IC200MDL940 | IC200CBL545 | IC695CPE302 |
IC200CPU002 | IC200CBL550 | IC695CDEM006 |
IC200UDD112 | IC200UAR028 | IC695CPL410 |
IC200UDD120 | IC200CBL525 | IC695PNS101 |
IC200DEM103 | IC200MDL741 | IC695ALG626 |
IC200UDD064 | IC200UAL005 | IC695ALG608 |
GE數字模塊 IC693MDL734 全新原裝 質保一年
不少電池企業都為新品起了性感的名字,如“4680”、“頂流”、”M3P”、“短刀”、“凝聚態”,意在打造讓從主機廠到C端用戶均耳熟能詳的記憶點。
而追根溯源,創造具有差異化的電池,不僅需要基礎研發人員對材料的探索和大膽想象,還需要能夠剖析微觀機制的工具。
一、的電池,離不開更高效的工具
電池企業都想在“性能”、“安全性”、“成本”等關鍵因素上表現優異,這就需要超過同行的質量控制手段。首先就要在研發環節,充分了解和控制電池相關材料的特性,選擇良好的材料。
材料從根本上決定著電池性能。通過改進材料提高電池性能、優化電池老化機制、應用新型材料、改變電芯結構是電芯研發的主要方向。而且,往往多策并舉,促成電池的升級和創新。
材料體系方面,采用高鎳正極、硅基負極、鋰金屬負極等新型材料體系,提高單體能量密度;或者研制出磷酸錳鐵鋰,探索鈉離子電池的商業化應用,降低成本;或者加快固態電池的研發進程,使電池性能更高,更耐久。
電芯形狀方面,方形電池,尤其是LFP短刀兼顧性能、集成與制造,成為主流企業的優選方案之一;大圓柱電池也是熱門方向,特斯拉和寶馬均已提出具體的實施規劃。
快充技術方面,多家主機廠聯合電池企業推出2C~4C快充方案。這就需要電池企業從電池材料(尤其是負極材料的選擇和微觀結構的設計)、電極設計等出發,降低內阻、加強散熱,提高電池的倍率性能。
▲ 動力電池的技術趨勢 來源:《纖毫畢現,追根溯源–探索電池高效生產 打造高品質電池的奧秘》白皮書
正所謂“工欲善其事,必先利其器”,更的動力電池產品離不開更高效有力的檢測工具。
材料的微觀結構表征是電芯研發的關鍵,目前多種材料表征方法被推出并得到廣泛應用。
在研發環節,工程師利用光學顯微鏡、X 射線顯微鏡、3D 檢測來觀察電極材料,檢測電極缺陷并分析電池失效原理。還可觀察材料的粒徑尺寸、各種成分的配比及分布情況等,加深研發人員的認識和理解。這些都可以在提高研發效率的同時更好的改善電池性能,進而為材料、工藝的改進提供依據。
二、電池材料的二維顯微成像和表征
光學顯微鏡,起源于17世紀,借助可見光的波長放大物體,實現了微米級分辨率,廣泛用于生命科學、材料科學等。在電池領域,它能觀察電極結構、檢測電極缺陷和鋰枝晶的生長,為電池研發提供寶貴數據。但受限于可見光的波長,其觀測范圍有限,而電子顯微鏡則很好的解決了這個問題。
電子顯微鏡于1931年問世,使用電子束放大物體,大可放大高達300萬倍,達到納米級分辨率。由于電子顯微鏡具備更高的分辨率,在電池研發中,搭配不同的探頭,可以得到多維度的信息(成分、表征信息,粒度尺寸,配料占比等),實現對正負極材料、導電劑、粘結劑及隔膜等更微觀結構的檢測(觀察材料的形貌、分布狀態、粒徑大小、存在的缺陷等)。
▲ 電池正負極材料、導電劑、粘結劑、隔膜SEM圖 來源:蔡司(使用蔡司電子顯微鏡測試)
由于具備高分辨率,掃描電子顯微鏡(SEM) 能清楚地反映和記錄材料的表面形貌特征,因此成為表征材料形貌為便捷的手段之一。
三、電池檢測:從2D到3D
盡管2D平面檢測簡單且有效,但有時可能會出現偏差。3D成像為研發人員提供了更為直觀的檢測結果,提高了電池的研發效率和性能。
其中,X射線顯微鏡技術如蔡司的Xradia Versa系列,可以實現電池內部的高分辨率3D無損成像,分辨電極顆粒與孔隙、隔膜與空氣等,可以大大簡化流程,節省時間。
▲ 電池內部高分辨率成像(掃描完整樣品 - 選擇感興趣區域 - 放大并進行高分辨率成像)來源:蔡司(使用蔡司 Xradia Versa 系列 X 射線顯微鏡測試)
在此基礎上,蔡司推出的4D微觀結構演化表征方法,可以獲得更多信息,提供更微小的細節特征。
當需要進一步高分辨率分析時,新一代聚焦離子束(FIB)技術成為。FIB結合SEM,允許樣品在納米級別進行精細加工和觀察。蔡司和賽默飛均已推出相關顯微鏡產品。
四、電池的原位測試和多技術關聯應用
一種檢測手段常常無法完全表征材料屬性。所以,行業將不同的測試設備協同應用,實現多手段的關聯,則可以在測試中得到多維度的信息,使結果更為直觀。
早期,多手段關聯的出發點,是以不同分辨率來觀察被測對象的需求。利用 CT→X 射線顯微鏡→ FIB-SEM,選定區域并逐級放大,就可以得到更為全面和jingque的信息,同時可以實現快速定位,使檢測更為高效。
▲ 正極材料的多尺度關聯分析 來源:蔡司(使用蔡司 Xradia Versa、Ultra、FIB-SEM 系列產品多尺度關聯測試)
為了實現原位多角度分析,如德國 WITec、捷克 Tescan、蔡司等推出了 RISE 系統,實現拉曼成像與 SEM 等技術的聯合應用,通過電池表面形貌(SEM)、元素分布(EDS)與電極材料分子組成信息(Raman 圖譜)結合。
材料測試通常伴隨制樣過程,由于 FIB-SEM 需要對同一個樣品進行多次制樣測試來構建 3D 圖像,采用常規制樣方法需要消耗很長時間。為解決這個問題,蔡司提出了一組非常巧妙的聯合方案。更多精彩內容,請查閱《纖毫畢現,追根溯源 – 探索電池高效生產 打造高品質電池的奧秘》白皮書。
GE數字模塊 IC693MDL734 全新原裝 質保一年
聯系方式
- 電 話:0592-6372630
- 銷售經理:蘭順長
- 手 機:18030129916
- 微 信:18030129916